1.浙江大学计算机科学与技术学院
吴飞,浙江大学人工智能研究所所长、上海高等研究院常务副院长,教授,博士生导师;研究领域为人工智能和多媒体分析。
陈为,浙江大学计算机辅助设计与图形学国家重点实验室副主任,教授,博士生导师;研究领域为可视化和大数据智能。
孙凌云,浙江大学计算机科学与技术学院副院长,教授,博士生导师;研究领域为人工智能和设计智能等。
肖俊,浙江大学人工智能研究所副所长,教授,博士生导师;研究领域为机器学习和跨媒体计算等。
扫 描 看 全 文
吴飞,陈为,孙凌云,等.以知识点为中心建设AI+X微专业[J].科教发展研究,2023,3(1):96-116.
WU Fei, CHEN Wei, SUN Lingyun, et al. The Building of AI+X Micro-Program around the Tree of Knowledge[J]. Journal of Science, Technology and Education Studies, 2023, 3(1): 96-116.
认知是人类智能的重要表现,其基石和燃料是规范化的知识(如概念、属性和关系等),基于规范化的知识就可形成对学习对象的理解和分类。不同学科之间知识点的交融汇通是向科学本质回归,助力产生科学新的增长点和突破点,人工智能(Artificial Intelligence, AI)在学科交叉中可发挥催化剂和使能器的重要作用。因此,在掌握本学科知识的同时,又掌握人工智能基本技术,具备跨学科潜力和迁移技能的专业人员变得越来越重要。文章探讨了以知识点为核心,“教材出版、课程设立和平台研制”三位一体来建设非计算机专业和非人工智能专业学生AI+X微专业的实践。
Cognition is an important manifestation of human intelligence, and its cornerstone and fuel are standardized knowledge (such as concepts, attributes, and relationships). Boosted by the standardized knowledge, understanding and classification of learning objects can be fulfilled. The convergence of the tree of knowledge between different disciplines is a return to the essence of science, helping to generate new knowledge and achieve breakthroughs in science. Artificial intelligence can play an important role as a catalyst and empowering tools in interdisciplinary interactions. As a result, demand for professionals from other disciplines who are hard-wired in AI technology knowledge but who also possess interdisciplinary perspectives and transferable skills is becoming increasingly pressing. This article discusses the practice of building AI+X micro-programs for non-computer and non-artificial intelligence majors by integrating "textbook, course and platform" around the tree of knowledge.
学科交叉AI+X微专业人工智能知识点
Inter-disciplinaryAI+X Micro-ProgramArtificial Intelligencethe Tree of Knowledge
袁广林.综合交叉学科发展的组织建构和制度设计:基于我国大学创建世界一流学科的思考[J].学位与研究生教育,2018(7):2.
YUAN Guanglin. The Organizational Construction and System Design of Comprehensive Interdisciplinarity: A Perspective of World-Class Discipline Construction[J]. Academic Degrees & Graduate Education, 2018(7): 2 (in Chinese).
吴飞,杨洋,何钦铭.人工智能本科专业课程设置思考:厘清内涵、促进交叉、赋能应用[J].中国大学教学,2019(2):17.
WU Fei, YANG Yang, HE Qinming. Thoughts on the Curriculum of Undergraduate Major in Artificial Intelligence: Clarifying the Connotation, Promoting Inter-disciplinary Crossover, and Empowering Application[J]. China University Teaching, 2019(2): 17 (in Chinese).
LLULL R. Arbor Scientiae[EB/OL]. [2023-03-13]. http://bigbangdata.cccb.org/en/arbor-scientiae-ramon-llull/http://bigbangdata.cccb.org/en/arbor-scientiae-ramon-llull/.
Bacon F, Montagu B. The Works of Francis Bacon[M]. London: J. Rivington, 1819: 43.
马克思恩格斯文集:第1卷[M].北京:人民出版社,2009:331.
Collected Works of Marx and Engels: Volume 1[M]. Beijing: People’s Publishing House, 2009: 331 (in Chinese).
Interactive Historical Atlas of the Disciplines[DB/OL]. [2023-03-13]. https://atlas-disciplines.unige.ch/https://atlas-disciplines.unige.ch/.
KIDD I G. Philosophy and Science in Posidonius[J]. Antike und Abendland, 1978, 24(1): 7-15.
BACON F. Of the Advancement and Proficiencie of Learning: Or, The Partitions of Sciences [M]. Translated by WATTS G. London: T. Williams, 1674.
DE CARITAT M J A N. Sur le sens des mots sciences et art, sur les classifications des sciences et des arts[M]//SCHANDELER J P. Tableau historique des progrès de l’esprit humain: projets, esquisse, fragments et notes. Paris: L’Institut national d’études démographiques, 1793: 761-773.
LANCELIN, P F. Introduction à l’analyse des sciences, ou de la génération, des fondements, et des instruments de nos connoissances: volume 3[M]. Paris: Bossange, Masson et Besson, [1803].
PARK R. Pantology; or, A Systematic Survey of Human Knowledge; Proposing a Classification of All Its Branches and Illustrating their History, Relations, Uses, and Objects[M]. Philadelphia: Hogan & Thompson, 1841.
DESTUTT A L C. A Commentary and Review of Montesquieu’s Spirit of Laws[M]. Translated by Thomas Jefferson. New York: Burt Franklin, 1969.
NAVILLE A. Nouvelle classification des sciences: étude philosophique[M]. Paris: F. Alcan, 1901.
BLISS H E. The Organization of Knowledge and the System of the Sciences[M]. New York: Holt, 1929.
BETH E W. Science and Classification[J]. Synthese, 1959, 11(3): 231-244.
ATCHISON W F, CONTE S D, HAMBLEN J W, et al. Curriculum 68: Recommendations for Academic Programs in Computer Science – A Report of the ACM Curriculum Committee on Computer Science[J]. Communications of the ACM, 1968, 11(3): 160.
Association for Computing Machinery, Institute of Electrical and Electronics Engineers. Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force[J/OL]. Communications of the ACM, 1991, 34(6): 68-84[2023-03-13]. https://doi.org/10.1145/2594148https://doi.org/10.1145/2594148.
Association for Computing Machinery, Institute of Electrical and Electronics Engineers. Computing Curricula 2001[J/OL]. Journal of Educational Resources in Computing, 2001, 1(3): 1-240[2023-03-13]. https://doi.org/10.1145/384274.384275https://doi.org/10.1145/384274.384275.
Association for Computing Machinery, Institute of Electrical and Electronics Engineers. Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science[R/OL]. (2013-12-20) [2023-03-13]. https://doi.org/10.1145/2534860https://doi.org/10.1145/2534860.
HEY T, TANSLEY S, TOLLE K, et al. The Fourth Paradigm: Data-Intensive Scientific Discovery[M]. New York: Microsoft Research, 2009.
LYNCH C A. Jim Gray’s Fourth Paradigm and the Construction of the Scientific Record[M]//HEY T, TANSLEY S, TOLLE K, et al. The Fourth Paradigm: Data-Intensive Scientific Discovery. New York: Microsoft Research, 2009.
HAMILTON W D. The Genetical Evolution of Social Behaviour. I[J]. Journal of Theoretical Biology, 1964, 7(1): 17-52.
GINTIS H. Strong Reciprocity and Human Sociality[J]. Journal of Theoretical Biology, 2000, 206(2): 169.
BOWLES S, GINTIS H. The Evolution of Strong Reciprocity: Heterogeneous Populations[J]. Theoretical Population Biology, 2004, 65(1): 21.
DE QUERVAIN D J, FISCHBACHER U, TREYER V, et al. The Neural Basis of Altruistic Punishment[J]. Science, 2004, 305(5688):1254-1258.
WU Fei, HE Qinming, WU Chao. AI+X Micro-Program to Foster Interdisciplinary Talents in China[J]. Communications of the ACM, 2021, 64(11): 52-54.
吴飞,陈为.人工智能交叉人才培养与课程体系[M].北京:清华大学出版社,2022.
WU Fei, CHEN Wei. Curriculum System for Training of AI+X Interdisciplinary Talents[M]. Beijing: Tsinghua University Press, 2022 (in Chinese).
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构